博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Hadoop界的Hello World!
阅读量:5939 次
发布时间:2019-06-19

本文共 4487 字,大约阅读时间需要 14 分钟。

Hadoop界的Hello World!

                                                                                     2019-05-20  19:50:09

 

应用平台:Eclipse+ubantu+hadoop包

注:例分析的形式给宝宝们解释一下,详细运行过程省略。

 

实例:定义一个进行统计的原始文件

 

Hello MrZhangxd Hello Yootk

Hello Bye Bye Bye

Hello MrZhangxd

 

预期结果:

 

Bye 3

Hello 4

MrZhangxd 2

Yootk 1

 

主要实现利用MapReduce,那么什么是MapReduce?

 

MapReduce是一种可用于数据处理的编程模型。MapReduce程序本质是并行运行的。

 

第一步 使用可视化表格进行分析

 

对于MapReduce而言有两个阶段

    Map阶段:对数据的处理阶段

    Reduce阶段:对处理后的数据进行计算

以上实例如果使用MapReduce处理的话其流程如下:

 

Map处理

排序处理

合并处理

Reduce处理

<Hello,1>

<MrZhangxd,1>

<Hello,1>

<Yootk,1>

<Hello,1>

<Bye,1>

<Bye,1>

<Bye,1>

<Hello,1>

<MrZhangxd,1>

<Bye,1>

<Bye,1>

<Bye,1>

<Hello,1>

<Hello,1>

<Hello,1>

<Hello,1>

<MrZhangxd,1>

<MrZhangxd,1>

<Yootk,1>

 

 

 

<Bye,1,1,1>

<Hello,1,1,1,1>

<MrZhangxd,1,1>

<Yootk,1>

 

 

 

 

 

 

<Bye,3>

<Hello,4>

<MrZhangxd,2>

<Yootk,1>

 

 

 

以上整个操作称作一个完整的作业“Job”

 

第二步 代码编写(代码格式主要参考《代码整洁之道》的编码格式)

 

实现单词统计的代码:

 

package org.mrzhangxd.com.linux;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

/**

 * 本操作主要是进行Map的数据处理

 * @author MrZhangxd

 * 在Mapper父类里面接受的内容如下:

 * Object:输入数据的具体内容

 * Text:每行的文本数据

 * Text:每个单词分解后的统计结果

 * IntWritable:输出记录的结果

 */

public class WordCount {//本处要求实现单词统计的处理操作

     //在整个代码中最为关键部分就是Map和Reduce部分,而且这两个部分是需要用户自己了实现的

     private static class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{

              @Override

              protected void reduce(Text key, Iterable<IntWritable> values,

                       Reducer<Text, IntWritable, Text, IntWritable>.Context context)

                       throws IOException, InterruptedException {

                   // TODO Auto-generated method stub

                   super.reduce(key, values, context);

                   int sum = 0;//保存每个单词出现的数据

                   for(IntWritable count : values) {

                       sum += count.get();

                   }

                   context.write(key, new IntWritable(sum));

              }   

         }

     @SuppressWarnings("unused")

     private static class WordCountMapper extends Mapper<Object,Text,Text,IntWritable>{   

         @Override

         protected void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)

                   throws IOException, InterruptedException {

                   // TODO Auto-generated method stub

                   super.map(key, value, context);

                   //默认情况下是提取每一行数据,所以每行数据里面都会存在空格,那么要按照空格进行分割,每当出现一个单词就需要做一个统计的1

                   String lineContent = value.toString();    //取出每行的数据

                   String result [] = lineContent.split(" ");//按空格进行数据拆分

                   for(int x = 0;x < result.length;x++) {    //循环每行每个单词而后进行数据的生成

                       //每一个单词最终生成的保存个数是1

                       context.write(new Text(result[x]), new IntWritable(1)); 

                   }

         }

     }

     public static void main(String[] args) throws IOException {

         // TODO Auto-generated method stub

         if(args.length != 2) {

              System.out.println("本程序需要两个参数,执行,hadoop yootk.jar /input/info.txt /output");

              System.exit(1);   

         }

         //每一次的执行实际上都属于一个作业(Job),但是现在希望可以通过初始化参数来设置HDFS的文件存储路径

         //假设现在的文件保存在HDFS上的“input/info.txt”上,而且最终输出结果也将保存在HDFS的“output”目录中

         Configuration conf = new Configuration();

         //考虑到最终要使用HDFS进行内容的处理操作,并且输入的时候不带有HDFS地址

         String[] argArray = new GenericOptionsParser(conf, args).getRemainingArgs();//对输入的参数进行处理

         //后面就需要作业进行处理了,而且Map与Reduces操作必须通过作业来配置

         Job job = Job.getInstance(conf,"hadoop");//定义一个hadoop作业

         job.setMapperClass(WordCountMapper.class);//设置执行的jar文件的程序类

         job.setJarByClass(WordCount.class);    //指定Mapper的处理类

         job.setMapOutputKeyClass(Text.class); //设置输出key的类型

         job.setMapOutputValueClass(IntWritable.class);//设置输出的value类型

         job.setReducerClass(WordCountReducer.class);//设置reduce操作的处理类

         //设置Map-Reduce最终的执行结果

         job.setOutputKeyClass(Text.class);//信息设置为文本

         job.setOutputValueClass(IntWritable.class);//最终将内容设置为一个数值

         //设置输入以及输出路径

         //FileInputFormat.addInputPath(job, new Path(argArray[0]));

         FileInputFormat.addInputPath(job, new Path(argArray[0]));

         FileOutputFormat.setOutputPath(job,new Path(argArray[1]));

         //等待执行完毕

         try {

              System.exit(job.waitForCompletion(true) ? 0 : 1);

         } catch (ClassNotFoundException | InterruptedException e) {

              // TODO Auto-generated catch block

              e.printStackTrace();

         }//执行完毕并且退出

     }

 }

 

注:代码的编写是需要使用到Hadoop中提供的*.jar文件的。

 

C:\Users\ XXX \Desktop\大数据\hadoop-3.2.0\share\hadoop

需要配置如下几个路劲的开发包:

    |--Common组件包:

    |   |--C:\Users\XXX\Desktop\大数据\hadoop-3.2.0\share\hadoop\common

    |   |--C:\Users\XXX\Desktop\大数据\hadoop-3.2.0\share\hadoop\common\lib;

    |--Mapreduce组件包:

    |   |--C:\Users\XXX\Desktop\大数据\hadoop-3.2.0\share\hadoop\mapreduce

    |   |--C:\Users\XXX\Desktop\大数据\hadoop-3.2.0\share\hadoop\mapreduce\lib;

转载于:https://www.cnblogs.com/MrZhangxd/p/10895127.html

你可能感兴趣的文章
soapUI的简单使用(webservice接口功能测试)
查看>>
框架 Hibernate
查看>>
python-while循环
查看>>
手机端上传图片及java后台接收和ajaxForm提交
查看>>
【MSDN 目录】C#编程指南、C#教程、ASP.NET参考、ASP.NET 4、.NET Framework类库
查看>>
jquery 怎么触发select的change事件
查看>>
angularjs指令(二)
查看>>
(原創) 如何建立一个thread? (OS) (Linux) (C/C++) (C)
查看>>
<气场>读书笔记
查看>>
领域驱动设计,构建简单的新闻系统,20分钟够吗?
查看>>
web安全问题分析与防御总结
查看>>
React 组件通信之 React context
查看>>
ZooKeeper 可视化监控 zkui
查看>>
Linux下通过配置Crontab实现进程守护
查看>>
ios 打包上传Appstore 时报的错误 90101 90149
查看>>
Oracle推出轻量级Java微服务框架Helidon
查看>>
密码概述
查看>>
autoconf,automake,libtool
查看>>
jQuery的技巧01
查看>>
基于泛型实现的ibatis通用分页查询
查看>>